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Abstract: Ovarian cancer is the fifth most common cause of death due to cancer, and it is the
deadliest of all gynecological cancers. Diagnosing ovarian cancer via conventional photoacoustic
delay-and-sum beamforming (DAS) presents several challenges, such as poor image resolution
and low lesion to background tissue contrast. To address these concerns, we propose an
improved beamformer named lag-based delay multiply and sum combined with coherence factor
(DMAS-LAG-CF). Simulations and phantom experiments demonstrate that compared with the
conventional DAS, the proposed algorithm can provide 1.39 times better resolution and 10.77
dB higher contrast. For patient data, similar performance on contrast ratios has been observed.
However, since the diagnostic accuracy between cancer and benign/normal groups is a significant
measure, we have extracted photoacoustic histogram features of mean, kurtosis and skewness.
DMAS-LAG-CF can improve cancer diagnosis with an AUC of 0.91 for distinguishing malignant
vs. benign ovarian lesions when mean and skewness are used as features.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Photoacoustic imaging (PAI), also known as optoacoustic imaging (OA), is an emerging
biomedical imaging modality that uses the resolution of ultrasound imaging and the contrast of
optical imaging to provide structural and functional information [1–2]. PAI has demonstrated its
potential for image-based diagnosis in oncology (e.g., breast [3–4], thyroid [5–6], cervical [7],
colorectal [8–9], ovarian [10–11], and prostate cancers [12–13]), peripheral vascular diseases
(PVDs) [14], joint inflammations [15–17], and skin diseases [18–20].

Ranking fifth among fatal cancers affecting women, ovarian cancer accounts for more deaths
than any other cancer of the female reproductive system. According to the American Cancer
Society, about 21,750 women received a new diagnosis of ovarian cancer and about 13,940
women died from ovarian cancer in 2020 [21]. Due to the lack of early screening and diagnostic
techniques, many women are diagnosed with ovarian cancer when it is already at stages III or
IV, where the mortality rates are high (70 to 75%) [22]. Conventional screening tests, including
pelvic examination [23,24], transvaginal ultrasound (TVUS) [25,26], and blood testing for cancer
antigen 125 (CA-125) [26,27], lack sufficient specificity for early ovarian cancer diagnosis [27].
Imaging modalities such as computed tomography (CT), positron emission tomography (PET),
and magnetic resonance imaging (MRI) have been used for surgical guidance. However, all of
these modalities have limitations in detecting small lesions. In previous work, to address this
limitation, we developed a co-registered photoacoustic and TVUS technique to improve ovarian
cancer diagnosis [10,11].

Currently, clinical applications of photoacoustic (PA) or ultrasound (US) imaging most
commonly use the delay and sum (DAS) beamforming algorithm. This algorithm simply sums
the properly delayed and weighted PA/US signal from each channel according to the distances
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between the focal points and the detectors. However, it has the drawbacks of low resolution
and high side lobes, resulting in poor reconstructed image quality. Lim et al. first introduced
the delay-multiply-and-sum (DMAS) image reconstruction algorithm for confocal microwave
imaging used for breast cancer detection [28]. Subsequently, Matrone et al. proposed an
improved version of DMAS to overcome the limitations of DAS in US imaging [29]. Because
DMAS improves the coherence of detected channel data, it provides enhanced image quality,
with narrower main lobes, and lower side lobes than DAS. These advantages have led several
researchers to adopt DMAS in PA imaging and to propose new approaches combining DMAS
with other methods. Park et al. combined DMAS with synthetic aperture focusing and applied
it to PA microscopy [30]. Alshaya et al. applied DMAS to PA imaging, employing a linear
array transducer and introducing a subgroup DMAS method to improve the SNR and processing
speed [31]. Matrone et al. combined filtered DMAS (F-DMAS) with multi-line transmission to
achieve high frame-rate and high resolution [32]. Mozaffarzadeh et al. combined the minimum
variance (MV) beamforming algorithm with DMAS [33]. The MV adaptive beamformer [34]
can dynamically calculate the signal weights of the received signals instead of using a fixed
apodization function. However, it is very computationally demanding.

While all the above approaches are based on the single-stage DMAS method, Mozaffarzadeh
et al. [35] proposed a double-stage DMAS (DS-DMAS) beamforming algorithm. They literally
divided the process of beamforming into two stages. First, the signals are processed by DMAS,
that is, the right side of the DMAS equation is expanded to the summations of the separate
terms, and these summations are treated as several new synthesized signals. Second, the new
synthesized signals are processed by the F-DMAS beamformer again to generate the final output.
Same as DMAS, DS-DMAS further improves the image resolution and reduces the side lobes,
and is less sensitive than DMAS to high noise levels at deeper depths. Since the DS-DMAS
approach was proposed, it has been adopted in photoacoustic imaging [36–38]. Very recently,
Song et al. proposed a modified version of DS-DMAS for ultrasound imaging [39]. In the first
phase of DMAS beamforming, they combined pairs of signals with the same spatial lag into a
new signal. Then they processed the new signal with F-DMAS beamforming to produce the
final output. They showed that combining the autocorrelation signals with the DMAS, the image
quality of DS-DMAS is slightly improved as compared with the DS-DMAS.

Several groups have proposed a nonlinear beamformer based on p-th root compression (NL-p-
DAS) and applied it to PA and US imaging [40–42]. The results have showed that compared with
DAS, and DMAS, the NL-p-DAS (p>2) leads to lower side lobes. However, different than DMAS
family of algorithms which is based on autocorrelation approach to improve PA and US signal
coherence, the p-th root compression may compress both signal and artifacts depending on the
relative strengths of the two parts. The p-th power applied to the coherent beam sum may or may
not compensate the signal loss depending on the constructive and destructive interferences. Thus,
the optimal choice of p-th root is tricky and highly depends on the imaging medium. Recently,
Cho el al. modified the NL-p-DAS technique and performed p-th root operation on the spectral
domain data (NL-p-SMS) instead of the temporal domain data, which could reduce the grainy
speckles and frequency distortion caused by p-th root in temporal domain data, and dark area
artifacts [43]. The algorithm remains to be tested on more clinical data.

The coherence factor (CF) [44] is widely used for aberration correction and side lobe
suppression in PA and US imaging. Jeon et al. combined the DMAS algorithm with CF for
clinical PA imaging [45]. Mozaffarzadeh et al. combined MV with CF to achieve better resolution
in PA imaging [46]. Spadin et al. compared the frequency-domain and delay-and-sum PA
image reconstruction with CF weighting [47]. Mukaddim et al. applied spatiotemporal CF to
in vivo cardiac PA image beamformation [48]. Bell et al. applied short-lag spatial coherence
beamforming to cardiac ultrasound imaging [49].
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Here we propose an improved beamformer, named DMAS-LAG-CF which combines lag-based
DMAS (DMAS-LAG) [39] with CF to improve spatial resolution and image contrast for better in
vivo ovarian cancer diagnosis. To our best knowledge, this is the first time that DMAS-LAG-CF
has been implemented and applied to photoacoustic imaging, especially for clinical cancer
studies. Due to the nonlinear process of DMAS-LAG-CF, the reconstructed image intensity
is not linearly proportional to the initial PA pressure. Therefore, the typical linear unmixing
method for calculating the relative total hemoglobin concentration and oxygen saturation is not
suitable. However, the proposed DMAS-LAG-CF can achieve better image contrast using a
single wavelength in near real-time imaging.

2. Materials and methods

2.1. Proposed reconstruction algorithm

The improved version of DMAS [29] is formulized as

sij(t) = sign(si(t)sj(t)).
√︂
|si(t)sj(t)| (1)

yDMAS(t) =
N−1∑︂
i=1

N∑︂
j=i+1

sij(t), (2)

where si and sj are the delayed signals received by the ith and jth elements, respectively. N is the
number of elements used to receive signals. yDMAS is the DMAS beamformed output. In this
algorithm, due to the multiplication and summation, the central frequency, f 0, of the original
signals is shifted to DC and 2f 0 in the output. Thus, the output is filtered by a bandpass filter,
centered at 2f 0, to recover frequency components while removing DC components. Equation (2)
can be expanded as

yDMAS = [s̄1s̄2 + s̄2s̄3 + · · · + s̄N−2s̄N−1 + s̄N−1s̄N] + [s̄1s̄3 + s̄2s̄4 + · · · + s̄N−3s̄N−1 + s̄N−2s̄N]

+ · · · + [s̄1s̄N−1 + s̄2s̄N] + [s̄1s̄N],
(3)

where s̄i = sign(si)
√︁
|si |, for 1 ≤ i ≤ N. In this equation, signal pairs with the same lag are

grouped in separate brackets [39]. We consider the output of each of these brackets as a new
signal and call it ssi, which is defined as

ssi =
N−i∑︂
k=1

s̄k · s̄k+i, (4)

for 1 ≤ i ≤ N − 1. We combine each ssi with the CF, and obtain a new parameter, defined as

ccsi =
N−i∑︂
k=1

csk · csk+i, (5)

for 1 ≤ i ≤ N−1, where csi =
(
∑︁N

i=1 si)
2

N
∑︁N

i=1 (si)
2 ·si, csi = sign(csi)

√︁
|csi |. Then the final DMAS-LAG-CF

can be formulated as

yDMAS−LAG−CF =
N−2∑︂
i=1

N−1∑︂
j=i+1

ccsi · ccsj. (6)

The schematic diagram of DMAS-LAG-CF is shown in Fig. 1. All the symbols used in the
diagram are the same as those in the Eq. (5) and (6). This diagram depicts how to synthesize new
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signals in terms of different lags which are discriminated by different colors in Fig. 1. To compare
the performance of DMAS-LAG-CF with DMAS-CF, we also implemented the DMAS-CF
algorithm which is formulized as

yDMAS−CF =
N−1∑︂
i=1

N∑︂
j=i+1

sign(csi · csj).
√︂
|csi csj |. (7)

Fig. 1. Schematic diagram of DMAS-LAG-CF.

2.2. Co-registered PAT/US imaging system

Our co-registered PAT/US imaging system, described in detail in [10,50], consists of a Ti:
sapphire (Symphotics TII, LS-2122) optically pumped with a Q-switched Nd: YAG laser
(Symphotics TII, LS-2134) to deliver pulsed laser light (10–30 ns pulse duration, 15 Hz pulse
repetition rate), a commercial ultrasound system (EC-12R, Alpinion Medical Systems), and a 128
channel curved transvaginal ultrasound transducer (central frequency: 6 MHz, 80% bandwidth).
For each imaging position, the system is programmed to record data sequentially at wavelengths
of 730, 780, 800, and 830 nm. The pulsed laser light output at tissue surface is below the ANSI
safety limit [51]. Note that, due to the nonlinear process of DMAS-LAG-CF, we use only a single
wavelength (730 nm) for the following data processing.

2.3. Ovarian cancer patients

A total of 28 patients enrolled from May 2017 to November 2018, were evaluated in this study.
Among these patients, both ovaries were imaged in 12 patients; for the remaining 16 patients,
only one suspicious ovary with pathological evaluation was imaged. Among 40 ovaries, 10
had invasive serous or endometroid ovarian cancer, one had a serous borderline tumor, and the
rest were benign/normal ovaries. The borderline tumor was included in the cancerous group in
the analysis. This study protocol was approved by the Institution Review Board of Washington
University Medical School in St. Louis and all patients signed the informed consent.

2.4. Feature selection and classification

Histograms of PAT image envelopes were computed from the malignant and benign/normal
groups, and three features–variance, skewness, and kurtosis, (see Appendix A)–were extracted
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quantitatively from the histograms to characterize these two groups. The mean values of PAT
image envelopes (PAT_mean) within the regions of interest (ROIs) and the corresponding
histogram features were tested using two-sample two-sided Student’s t tests. A feature with a
p-value equal to or less than 0.05 (p ≤ 0.05) was considered significant.

Next, we performed a regression analysis on our data to find the best logistic regression model.
Models were developed for three sets of independent features extracted from all the patients:
PAT_mean alone, PAT_mean and kurtosis combined, and PAT_mean and skewness. Skewness
and kurtosis were not evaluated as a set because they are highly correlated by Spearman’s cross
correlation. For each model, the receiver operating characteristic (ROC) curve and the area under
the curve (AUC) were calculated, and the best model was determined by the highest AUC value.

2.5. Performance evaluation

First, we compared the spatial resolution and side lobe performance of the DAS, DMAS,
DMAS-CF, DMAS-LAG, and DMAS-LAG-CF beamforming algorithms, using a simulated
numerical phantom. The raw data consisted of seven equidistant pairs of point targets located at
seven different depths. The transducer array geometry used in the simulation was linear, with
64 elements (element pitch, 231 µm; kerf, 38.5 µm; element height and width, 14 mm and
192.5 µm; lambda, 385 µm). The full width at half maximum (FWHM) was calculated from
the fitted Gaussian curve after deconvolution with the transfer function of the transducer, and
this value is used as a measure of the spatial resolution throughout the paper. We compared
the performance of DAS, DMAS, DMAS-CF, DMAS-LAG, and DMAS-LAG-CF by imaging
a 200 µm diameter black thread perpendicular to the imaging plane and submerged in a water
tank filled with calibrated intralipid solution (Fresenius Kabi, USA) with a reduced scattering
coefficient (µ′s) of 4 cm−1 and an absorption coefficient (µa) of 0.02 cm−1.

Next, we compared the contrast ratios (CRs) of a simulated contrast phantom as reconstructed
by the DAS, DMAS, DMAS-CF, DMAS-LAG, and DMAS-LAG-CF beamforming algorithms.
Following the same procedure as in [52,53], we modeled a benign cyst as a 15-mm-diameter
sphere within a tissue mimicking medium (the cube size was 84 * 84 * 70 mm) at a depth of 20
mm. The tissue mimicking background medium’s µa was set as 0.1 cm−1, and µ′

s was set as 5
cm−1. As the positive contrast (higher than the background µa), the cyst’s µa was set as 0.9 cm−1

and µ′
s was set as 0.0001 cm−1 to mimic an aqueous medium without scattering. The CR index

is defined as CR= 20 log10Itarget/Ibackground, where Itarget and Ibackground are the PAT_mean in
the target and background areas. The ideal CR based on µa ratio is 19dB.

We then applied the DAS, DMAS, DMAS-CF, DMAS-LAG, DMAS-LAG-CF algorithms to
ovarian cancer patient data to improve the image contrast between the PAT image envelopes of
the cancerous masses and those of the benign/normal lesions. We calculated the PAT_mean in
each ROI and extracted the histogram features from the corresponding PAT image envelopes.
Ultrasound images were employed to select an ROI corresponding to the lesion. Note that we
selected only one normal or cancer area for each ovary. Thus, a total of 11 cancer areas and 29
normal areas were obtained for quantitative feature extraction and classification.

3. Results

As shown in Fig. 2(a), the simulated point target pairs reconstructed by DMAS-LAG-CF are
smaller than those reconstructed by the other algorithms. Based on the 1-D profile from
DMAS-LAG-CF in Fig. 2(b), the two peaks corresponding to the two point targets are sharpest
and the side lobes are lowest. Also, from the lateral resolution calculated at three different depths
(49, 59, 69 mm) shown in Fig. 2(c), the lateral resolution for DMAS-LAG-CF is around 1.70,
1.52, 1.10, and 1.20 times better than the values for DAS, DMAS, DMAS-CF, and DMAS-LAG.

In Fig. 3, the black thread cross-section reconstructed by DMAS-LAG-CF is thinnest. Based
on 1-D profiles across the black thread, the lateral resolution of DMAS-LAG-CF is respectively
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Fig. 2. (a) Simulated point target pairs reconstructed by DAS, DMAS, DMAS-CF, DMAS-
LAG, and DMAS-LAG-CF (dynamic range, 15 dB). (b) The corresponding 1-D profiles
of the images in (a) at a depth of 49 mm. (c) The lateral resolution performance for DAS,
DMAS, DMAS-CF, DMAS-LAG, and DMAS-LAG-CF at depths of 49 mm, 59 mm, and 69
mm.

around 1.39, 1.30, 1.07, and 1.15 times better than those of DAS, DMAS, DMAS-CF, and
DMAS-LAG. The theoretical value of the spatial resolution is around 0.20 mm.

Fig. 3. (a) Black thread images reconstructed by the DAS, DMAS, DMAS-CF, DMAS-LAG,
and DMAS-LAG-CF algorithms (dynamic range, 10 dB; scale, cm). (b) The corresponding
1-D profiles across the black thread (averaged from 20 consecutive envelopes along the
depth). (c) Calculated spatial resolution results based on the 1-D profiles across the black
thread.
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The geometry of the simulated contrast phantom is shown in Fig. 4(a). We selected two
background areas for fair judgement (the dashed square marked as 2 and 3 in Fig. 4(b), Fig. 4(c),
Fig. 4(d), Fig. 4(e), and Fig. 4(f)), with corresponding contrast ratios of CR1 and CR2. Comparing
Fig. 4(b), Fig. 4(c), Fig. 4(d), Fig. 4(e), and Fig. 4(f), we can see that the image reconstructed by
DMAS-LAG-CF has the best contrast between the target and background area. Quantitatively,
the CR1 of DMAS-LAG-CF was around 12.19 dB, 8.81 dB, 7.47 dB, and 4.10 dB higher than
those of DAS, DMAS, DMAS-CF, and DMAS-LAG, based on the mean values of the image
intensity calculated in the target and background areas. Also the CR2 of DMAS-LAG-CF was
around 9.35 dB, 6.83 dB, 5.85 dB, and 2.96 dB higher than those of DAS, DMAS, DMAS-CF,
and DMAS-LAG. On average, the CR of DMAS-LAG-CF was around 10.77 dB, 7.82 dB, 6.66
dB, and 3.53 dB higher than those of DAS, DMAS, DMAS-CF, and DMAS-LAG. In Fig. 4(c),
Fig. 4(d), Fig. 4(e), and Fig. 4(f), one small dot appears underneath the chosen target area
because the scattering coefficient of the cyst target is very low, and a small portion of light
propagates through the target area with higher light fluence than background to illuminate the
region underneath. Also, one red area appears right on top of the chosen target area close to the
transducer face, because the light has traveled only a very short distance and has not yet been
fully diffused.

Fig. 4. (a) Phantom geometries used for simulations. Simulated contrast phantom images
reconstructed by the DAS (b), DMAS (c), DMAS-CF (d), DMAS-LAG (e), and the DMAS-
LAG-CF (f) algorithms (dynamic range, 10 dB; scale bar, cm). (e) Calculated CR results
based on the mean values of the image intensity in the target and background areas (target
areas: dashed square areas 1 of (b), (c), (d), (e), and (f); background areas: dashed square
areas 2 and 3 of (b), (c), (d), (e), and (f)). CR1 and CR2 correspond to the dashed square
areas 2 and 3.

Figure 5 shows one example PAT image (730 nm) from an ovarian cancer, calculated by DAS,
DMAS, DMAS-CF, DMAS-LAG, and DMAS-LAG-CF. The CRs were computed from the two
background regions and the target central region as marked by the white boxes in the images. The
average CRs computed from the two background regions were given in the table. For the cancer
case, the DMAS-LAG-CF improved CR of DAS, DMAS, DMAS-CF and DMAS-LAG by 6.9 dB,
5.1 dB, 2.5dB, and 1.2 dB, respectively. For the benign case, the corresponding improvements of
CR were 7.6 dB, 4.6 dB, 3.4 dB, 1.5 dB, respectively. Thus, DMAS-LAG-CF performs the best on
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improving CR. However, since the clinical significance is the diagnostic accuracy between cancer
and benign/normal ovarian lesions, we have evaluated PAT-mean ratios of the two examples.
The PAT-mean ratios of the cancer to benign lesions are 2.32, 2.21, 2.16, 2.11, and 2.03 for
DMAS-LAG-CF, DMAS-LAG, DMAS-CF, DMAS, and DAS, respectively. DMAS-LAG-CF
improves PAT-mean ratio by 5%, 7%, 10%, and 14% compared with DMAS-LAG, DMAS-CF,
DMAS, and DAS.

Figure 6 shows boxplots for the PAT_mean and histogram features (kurtosis, skewness), across
the entire set of 28 patients between the benign/normal and cancer areas for DAS, DMAS, DMAS-
CF, DMAS-LAG, and DMAS-LAG-CF. The variance feature, not shown here, is not significant
for all five algorithms. The number n in the plots corresponds to the total number of areas. In
terms of three extracted histogram features (PAT-mean, kurtosis, and skewness), the p values
between cancers and benign/normal lesions obtained from DMAS-LAG and DMAS-LAG-CF
were lower than those of the standard DAS beamforming algorithm.

Figure 7 shows the ROC curves and AUC values of the fitting data sets, using regression
models for DAS (Fig. 7(a)), DMAS (Fig. 7(b)), DMAS-CF (Fig. 7(c)), DMAS-LAG (Fig. 7(d)),
and DMAS-LAG-CF (Fig. 7(e)). When skewness and PAT_mean are included in the feature set,
the best performances (the highest AUC values for the data set) are 0.87, 0.86, 0.82, 0.89, and
0.91 for DAS, DMAS, DMAS-CF, DMAS-LAG, and DMAS-LAG-CF, respectively.

4. Discussion and summary

In this paper, we implemented an improved beamformer, named DMAS-LAG-CF, which combines
lag-based delay multiply and sum with coherence factor.

We first compared the spatial resolution and contrast performance of the DAS, DMAS, DMAS-
CF, DMAS-LAG, and DMAS-LAG-CF beamforming algorithms using a simulated numerical
phantom. Compared to the performances of DAS, DMAS, DMAS-CF, and DMAS-LAG, the
lateral resolution for DMAS-LAG-CF was around 1.70, 1.52, 1.10, 1.20 times better.

Then we imaged a 200 µm diameter black thread perpendicular to the imaging plane and
submerged in a water tank filled with calibrated intralipid solution and found that the lateral
resolution of DMAS-LAG-CF was around 1.39, 1.30, 1.07, 1.15 times better than those of DAS,
DMAS, DMAS-CF, and DMAS-LAG. Afterwards, we compared the CR performance of DAS,
DMAS, DMAS-CF, and DMAS-LAG, and DMAS-LAG-CF using a simulated contrast phantom.

On average, the CR for DMAS-LAG-CF was around 10.77 dB, 7.82 dB, 6.66 dB, and 3.53
dB higher than those of DAS, DMAS, DMAS-CF, and DMAS-LAG. Thus, the improvement
of DMAS-LAG-CF over other algorithms is in image contrast. The two clinical examples have
demonstrated similar improvement in computed CRs. The corresponding CRs for the cancer
case were 6.9 dB, 5.1 dB, 2.5 dB, and 1.2 dB, and CRs for the benign case were 7.6, 4.6, 3.4, and
1.5 dB.

Since the clinical value of diagnostic accuracy is between cancer and benign/normal lesions,
we applied the DMAS-LAG algorithm without and with the coherent factor, to patient data to
enhance the contrast between PAT images of cancerous masses and that of benign/normal ovarian
lesions. In terms of three extracted histogram features (PAT_mean, kurtosis, and skewness), the
p values between cancers and benign/normal lesions were lower than those of the standard DAS
beamforming algorithm. The best DMAS-LAG-CF regression model achieved an AUC of 0.91,
when PAT_mean and skewness were included in the feature set. This is significant in offering
diagnosis to patients using photoacoustic imaging co-registered with ultrasound.

The three PAT features are related to the distribution of absorbers inside the ovaries. For
example, a cancerous ovary has large clusters of highly absorbing micro-vessels, and it is expected
that its PAT histogram should be more skewed towards higher mean values. DMAS-LAG and
DMAS-LAG-CF improve PA signal coherence over DAS, and thus these algorithms enhance
the contrast between highly absorbing cancerous tissue and benign/normal lesions. Kurtosis
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Fig. 5. PAT images (730 nm) and corresponding histogram features extracted from an
ovarian cancer (a)-(j) and a benign ovary (k)-(t). All PAT images are displayed with 15dB
dynamic range.
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Fig. 6. (a)-(c): Boxplots of mean values of PAT envelopes using (a) DAS, (b) DMAS (left)
and DMAS-CF (right), and (c) DMAS-LAG (left) and DMAS-LAG-CF (right). (d)-(f):
Boxplots of kurtosis using (d) DAS, (e) DMAS (left) and DMAS-CF (right), and (f) DMAS-
LAG (left) and DMAS-LAG-CF (right). (g)-(i): Boxplots of skewness using (g) DAS, (h)
DMAS (left) and DMAS-CF (right), and (i) DMAS-LAG (left) and DMAS-LAG-CF (right).
The p-value is shown in the associated plot. The number of samples in each group is also
shown in the x-axis of each plot.
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Fig. 7. ROC curves and associated AUC values of five regression models developed to fit
the data extracted from all patients. Regression model of DAS (a), DMAS (b), DMAS-CF
(c), DMAS-LAG (d), and DMAS-LAG-CF (e).

measures how close the distribution’s tail is to the tail of a normal distribution. If there are many
outliers in the histogram, the distribution is heavily tailed. Therefore, kurtosis can be a good
measure of the number of absorbers that are considered as outliers. Again, DMAS-LAG and
DMAS-LAG-CF improve PA signal coherence and therefore increase the deviation of cancerous
tissue, with large clusters of highly absorbing micro-vessels, from that of a normal distribution.

DMAS-LAG [39] is essentially the same as the DS-DMAS which improves DMAS by
improving off-axis noise levels at deeper depths [35]. Thus, the contrast improvements of
DMAS-LAG over DMAS and DMAS-LAG-CF over DMAS-CF are expected. However, both
DMAS and DMAS-CF should also improve the diagnostic performance of DAS because they
both improve PAT signal coherence by reducing off-axis noise. Only PAT_mean computed from
DMAS between cancer and benign/normal groups has a lower p value than that of DAS. We
were supervised that the ROC analysis of patient data did not show improvement of DMAS and
DMAS-CF over DAS, which warrants further investigation.

Note that, compared with the computational complexity of DAS (O(N), where N is the number
of elements), DMAS-LAG-CF has an exponentially higher computational complexity (O(N2)).
Also, the bandpass filters involved in the post-processing of the DMAS-LAG-CF rely on two
computationally intensive Fourier transforms. In processing a single frame from a patient dataset,
the average runtime of our DMAS-LAG-CF algorithm was about 10 times longer than that of
DAS. The reconstruction was performed by running MATLAB R2018 on a Windows 10 operating
system using an i3-6100 CPU (Intel, Santa Clara, CA, USA) and 16 GB memory. To achieve near
real-time clinical application, the processing speed can be improved with a better computational
platform and GPU processing. Also, the two-stage signum, absolute, and square root operations
slowed down DMAS-LAG-CF. In some application situations, we can perform only one stage of
the above operations to improve the processing speed at the expense of slightly lower resolution
and higher side lobes. Moreover, we can reduce the lag number for combinational multiplication
in the second stage to improve the processing speed at the cost of a decreased effective aperture
(spatial resolution).
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Overall, this initial study shows that the proposed beamforming algorithm can achieve valuably
better image contrast for improved diagnosis of ovarian cancer with a cohort of 28 patients.

DMAS and DMAS-LAG are nonlinear beamformers and the linear unmixing method to
compute the relative hemoglobin contrast from multi-wavelength data cannot be implemented
directly. This is an inherent limitation of DMAS based beamforming methods. However, the
methods can be readily implemented in single wavelength PA imaging for near real time ovarian
cancer diagnosis as well as other oncology applications.

Appendix A: Histogram features extraction

The three histogram features can be computed from Eq. (8) to (10), where xi is the pixel gray
level, and N is the total number of pixels.

Variance (σ2) =
1
N

N∑︂
i=1

(xi − µ)
2 (8)

Skewness =
1
N

N∑︂
i=1

[︂ xi − µ

σ

]︂3
(9)

Kurtosis =
1
N

N∑︂
i=1

[︂ xi − µ

σ

]︂4
− 3. (10)
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